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ABSTRACT

According to ray theory, regions exist in an upward refracting atmosphere where no sound should be

present. Experiments show, however, that appreciable sound levels penetrate these so-called shadow

zones. Two mechanisms contribute to sound in the shadow zone: diffraction and turbulent scattering of

sound. Diffractive effects can be pronounced at lower frequencies but are small at high frequencies. In

the short wavelength limit, then, scattering due to turbulence should be the predominant mechanism

involved in producing the sound levels measured in shadow zones. No existing analytical method

includes turbulence effects in the prediction of sound pressure levels in upward refractive shadow zones.

In order to obtain quantitative average sound pressure level predictions, a numerical simulation of the

effect of atmospheric turbulence on sound propagation is performed. The simulation is based on scattering

from randomly distributed scattering centers Cturbules"). Sound pressure levels are computed for many

realizations of a turbulent atmosphere. Predictions from the numerical simulation are compared with

existing theories and experimental data.

INTRODUCTION

Solar heating of the ground produces strong temperature gradients in the air just above the surface of

the Earth. Since the speed of sound is proportional to the square root of the temperature, sound will

follow upwardly curved paths in every direction from a source. The stronger the temperature gradients

involved, the shorter the distance to what is properly called a shadow zone, since no direct or reflected

rays can penetrate into this region. Figure 1 is an illustration of an upward refractive shadow zone where

the source is at a height h s and the radius of curvature of the limiting ray is Re. The edge of the shadow

zone is delineated by the so-called limiting ray which grazes the ground.

In a similar fashion, sound traveling upwind is curved upwards due to the strong wind gradients

near the ground and a shadow zone is also formed. In the case of wind, however, the effect is not

isotropic because of the vector nature of the wind velocity and the rays are actually bent downward for the

sound propagating downwind.

Two mechanisms contribute to the magnitude of the sound levels measured in shadow zones:

diffraction and the turbulent scattering of sound. Pierce 1 describes the solution for a linear sound speed
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gradientin termsof residueseriesfor thepressurein theshadowzone.Heexaminesthecasesof ahard

boundaryandapressure-releasesurfaceandgivesapproximatesolutionswhenthesourceandreceiverare
abovethecreepingwavelayerheight,definedas(Re/2k2) 1/3, where Re is the radius of curvature of the

limiting ray and ko is the wavenumber.

Daigle et al. 2 made use of the above two approximate solutions in an effort to fit the data they

collected over an asphalt airport runway and over a grass-covered strip near the runway, the latter

approximating a pressure-release surface at frequencies greater than 500 Hz and the former approximating

a hard boundary. They found that the hard boundary data was well explained by Pierce's approximate

solution for that case and that the data up to 1000 Hz over the grass-covered ground was satisfactorily

explained by Pierce's approximate solution for a pressure-release surface.

The approximate solution leads to large errors in the effective source levels for sources close to a

pressure-release or finite impedance ground, as was the case with Daigle's data. A complete discussion of

this problem can be found in the paper by Raspet and Franke. 3 In a later paper, Berry and Daigle 4 used

the complete residue series solution and again compared the above data. They found that the data at 250

Hz still agreed well with the predictions of diffraction theory. But the data was well under-predicted by

diffraction theory at 500 Hz and especially at 1000 Hz. The predictions from the full residue series

solution are shown in Fig. 2, which is a reproduction of Fig. 13b of Ref. 4.

The role played by atmospheric turbulence in the insonification of shadow zones has escaped

analytical formulation. In an effort to obtain a quantitative estimate of the extent to which atmospheric

turbulence raises the sound levels in a shadow zone, Gilbert et al. 5 used a parabolic equation method to

numerically simulate sound propagation in a turbulent atmosphere. They compared their predictions for

upward refracting conditions with experimental results of Wiener and Keast. 6 The numerical predictions

involved the calculation of the sound pressure magnitude for a particular realization or "snapshot" of

turbulence, while the results of Wiener and Keast were expressed in terms of average sound pressure

levels. Nevertheless, Gilbert et al. were able to duplicate the apparent range independence of excess

attenuation characteristic of the experimental data at ranges as great as 1 km.

In this paper, we present the average sound pressure levels in an upward refractive shadow zone

predicted by a scattering center based numerical simulation. The main features of the numerical solution

are reviewed and the modifications necessary to adapt it to an upward refractive atmosphere are discussed.

Sound levels are computed for over 500 realizations of the turbulent atmosphere. Predictions from the

numerical simulation are then compared with experimental data taken by Daigle et al. 2

MAIN FEATURES OF THE NUMERICAL SIMULATION

Although the details of the numerical simulation were given in an earlier paper,* the main features are

repeated here so that the reader may have a beiter idea of the type of calculations involved. Following the

model of de Wolf, 7 we construct an ensemble of isotropic, irrotational scattering centers which we call

"turbules." If Ix is defined as the change from unity of the index of refraction, a given turbule is assigned

the refractive profile

* Walton E. McBride, Henry E. Bass, Richard Raspet, Kenneth E. Gilbert, "Scattering of sound by

atmospheric turbulence," submitted to J. Acoust. Soc. Am., Feb. 1990.
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_r2/?
_t(r,s) = qi e (1)

where qi is the value of I.t at the center of the spherically symmetric turbule and s is the 1/e contour of

the scattering center and can be considered to be its effective size. The value of qi and the probability

distribution of turbule sizes depend in general on the particular functional form chosen for the correlation

function of the fluctuations of the index of refraction. If the correlation function is chosen to have the

Gaussian form,

_t ll.t2) = (ix z/e -r2/z'2, (2)

where <tx2> is the variance and L is the correlation length, then the size spectrum is a delta function

implying that all the turbules have the same size,

s = L_L_. (3)
/2-

The value of qi for this particular form of the correlation function is given by

-1112

qi = ++- (4)

and is inversely proportional to the turbule number density PN- An upper value of PN of about half the

overlap density is necessary so that the turbules will be separate entities. With single scattering, sound

scattered from a particular turbule reaches the receiver downfield with negligible scattering by other

turbules located between that particular turbule and the receiver. From Eq. (4) the product q2pN is a

constant whose value depends on the independently measured micrometeorological variables <l.t2> and L.

There is, therefore, a certain latitude in the value of PN" Decreasing PN will result in a greater value for

Iqil. Although a lesser number of turbules result from a decrease of PN, the predictions of the numerical

simulation are statistically steady as the turbule number density is decreased from an upper limit of half the

overlap density.

Initially in the development of the simulation, the first Born approximation to scattering was used to

determine the scattering effect of each turbule. In practice, the evaluation of the scattering integral is

performed by assuming that both source and receiver are far away from the scattering region; thus fn'st

order terms in the phase are sufficient. Because some of the turbules in the numerical simulation are close

to the source or receiver, second order terms in the phase were kept in the scattering integral. The total

pressure at a receiver downfield is, then, the sum of the direct and scattered spherical waves. For only one

turbule in free space, this is:
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eikR+_/-_ k2s3eik(rsr+r_(ll___)e-Ck2s2/4"p (R) = --R-- qi r,,rl,
(5)

where

C = (1-cos O0)2 + sin2 O0 (l_-_), (6)

and

a ks2 1) (7)

In the above equation, k is the wavenumber, s is the effective size of the turbule, O 0 is the angle

between the incident and scattered directions, R is the distance between source and receiver, while rst is the

distance between source and turbule center, and rtr is the distance between turbule center and receiver.

Note that the usual Born scattering term is recovered when a = 0 and the first term in Eq. (6) is

dropped. Even with this improved evaluation of the Born scattering integral, the distance from turbule to

source or receiver cannot be less than about twice the radius of the turbule. Consequently, "buffers" of a

turbule's diameter were placed in front of the source and receiver where no turbules were allowed.

The numerical simulation using the first Born approximation to scattering was then compared to

theoretical expressions due to Karavainikov 8 for the log-amplitude and phase variances of the pressure

fluctuations. It was found that good agreement was reached whenever the wave parameter D (=R/kL 2)

was greater than 1. As shown in Fig. 3, the log-amplitude variances as predicted by Karavainikov are

independent of frequency when D < 1, a result also obtained by Bergmann using geometrical optics.

In an effort to reach better agreement in the geometrical optics region, the Rytov approximation used

by Karavainikov was incorporated into the numerical simulation. The Rytov method consists of

approximating the field at the receiver by

_R(-_) = PO(_ e_R(_); (8)

whereas the Born approximation is written:

---'B

_n(_) = Po(_ + _P (_). (9)

There is a simple relationship between the first Rytov and first Born approximations:

---'B

go(r '
(10)

and it was, therefore, a simple matter to incorporate the first Rytov approximation into the numerical
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simulation.Theresultsareshownin Fig. 4 andgoodagreementis obtainedthroughouttherangeof the
waveparameterD.

As canbeseenfrom theabovecomparisonswith Karavainikov'sanalyticcurves,thefirst Rytov
approximationis superiorto thefirst Bornapproximationfor anunboundedmediumwithoutrefraction.
Whenrefractiveconditionsareinlroduced,however,theformationof shadowzonesbecomespossible.In
theshadowzones,P0is0 andtheira'stRytovapproximationcannotbeused.Recoursemustbemadeto
thefirst BornapproximationandthewaveparameterD mustbegreaterthan1for thenumericalsimulation
to bevalid in accordancewith theresultsof Fig. 3.

Thenextstepis theinclusionof theground.An immediateconsequenceof theexistenceof a
boundaryis thepresenceof threeadditionalpaths by which sound can propagate to the receiver. There

now exist four single scatter paths that connect the source and receiver:

1. source-turbule-receiver,

2. source-turbule-ground-receiver,

3. source-ground-turbule-receiver,

4. source-ground-turbule-ground-receiver.

The last three paths all interact with the ground and, therefore, a model of the effect of the ground on the

sound wave was also included in the numerical simulation.

The algorithm proceeds as follows. Values of <_t2> and L are given from independent micro-

meteorological measurements. From these, the value of s and qi are obtained using the above equations.

A scattering space, which will enclose thousands of turbules, is defined with buffers in front of the source

and receivers of widths equal to about the diameter of a turbule. The turbules are assigned positive o r

negative signs for their value of qi. The sound pressure at the receiver is calculated for this particular

arrangement of turbules, and the result is referred to as a realization. Then each turbule is given random,

small increments in its Cartesian coordinates. The sound pressure at the receiver is recalculated, resulting

in another realization. The process is repeated for as many realizations as are necessary for the statistics to

stabilize. We have found that 500 realizations are sufficient. Average sound pressure levels can then be

obtained from the 500 stored values of the sound pressure. It should be mentioned that any other desired

statistical quantity can be obtained, such as structure and correlation functions, as well as the variances of

the log-amplitude and phase fluctuations.

The inclusion of a sound speed gradient requires two modifications: the rays are now curved and the

value of the wavenumber k is no longer constant along a ray. In order to obtain a closed form solution

for the equation describing the rays, a linear sound speed gradient was assumed. As is well known, a

consequence of this assumption is that the ray paths are arcs of circles.

Because of the curvature of the ray paths, each path must be tested to see whether the source and

each turbule can be joined together, as well as each turbule and the receiver. If either segment of the total

path cannot be linked, that particular turbule's contribution is discarded. It was found that about 15% of

the turbules were eliminated in this way for the experimental data to be described later.

The last correction necessary is the calculation of an effective wavenumber ke for each ray path.

This required the computation of the length of each path, as well as the travel time along that path. Their
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ratiogaveaneffectivesoundspeedcealongthatpath,andtheeffectivewavenumberwasthengivenby

0ffC e .

COMPARISON TO DATA

In order to implement the numerical simulation, the statistical properties <l.t2> and L of the

turbulent atmosphere and the impedance of the ground are required. The former was given in the article by

Daigle et al. 2 as <_t2> = 6 x 10 -6 and L = 1.6 m. The impedance had to be approximated because the

article mentioned above did not specify a particular impedance model. To estimate the impedance, a

residue series solution developed by Raspet and Franke 3 was used to match the curves of Fig. 2 as closely

as possible at all three frequencies. The particular impedance model used was a four parameter model

developed by Attenborough.9 A shape factor n' of .750, a shape factor ratio sfof .875, a porosity f_ of

.675, and a flow resistivity _ of 330 cgs rayls give the results shown in Fig. 5.

The numerical simulation was performed with the above parameter values for 500 realizations. Rms

sound pressure values were computed and divided by the pressure doubling plus attenuation factor

(2e-aR/R) as was done in Daigle's presentation of his experimental data. The source was given a height

of 0 m, and six receiver positions were used 230 m downrange at heights of 0.25 m, 0.50 m, 1.0 m, 2.0

m, 4.0 m, and 7.0 m in order to sample the vertical behavior of the sound pressure levels in the shadow

zone. Because we are forced to use the first Born approximation when the receiver is in a shadow zone

(P0 = 0), the possible values of the wave parameter D must be checked to see that they will be greater than

1. Since D = R/kL 2 with R = 230 m and L = 1.6 m, it is sufficient to check the value of D for the greatest

frequency of interest. With 1000 Hz, k = 18.4 and, therefore, D = 5 which is well above the minimum

value of 1. The sound pressure levels predicted by the numerical simulation (expressed in dB) are

compared to Daigle's experimental data in Fig. 6 for the three frequencies involved. Notice the similarity

in shape which the curves representing the turbulent scattering contribution share with the curves that are

typical of diffraction theory predictions. As can be seen by comparing Figs. 2 and 6, it appears that for

this experiment the contributions from turbulent scattering and diffractive effects are about equal at 250

Hz. However, turbulent scattering becomes the major contributor at 500 Hz. At 1000 Hz, turbulent

scattering is the predominant mechanism behind the increased sound pressure levels measured in the

shadow zone.

CONCLUSION

Quantitative predictions for the average sound pressure levels in a refractive shadow zone have been

presented. Good agreement was reached with experimental data collected by Daigle et al 2 in a shadow

zone caused by temperature gradients. It seems that the use of a simple linear sound speed gradient is a

good approximation to the real sound speed profile directly above the ground for the moderate ranges

involved in this study. At the longer ranges investigated by Gilbert et al. it was necessary to use a

logarithmic sound velocity profile to obtain accurate predictions. 5 The relative contributions of diffraction

and turbulent scattering have been examined and graphically displayed. The dominant mechanism which

dictates sound levels in shadow zones at higher frequencies is scattering due to turbulence.
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Fig. 1 Shadow zone formation for a sound speed profile that decreases linearly with height.
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Fig. 2 Comparison of measured sound levels (points) with predictions based upon diffraction into the

shadow zone, taken from Ref. 4. Solid circles are for 1000 Hz, triangles for 500 Hz, and

diamonds for 250 Hz.
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Fig. 3
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Comparison of the numerical simulation using the first Born approximation (0 for phase variances;

x for log-amplitude variances) with Karavainikov's analytical results (_ for phase variances;

......... for log-amplitude variances).

Fig. 4
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Comparison of the numerical simulation using the first Rytov approximation (o for phase

variances; x for log-amplitude variances) with Karavainikov's analytical results (-- for phase

variances; ......... for log-amplitude variances).
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Fig. 5 Comparison of data with the prediction of diffraction theory using the residue series solution. Data

points are described for Fig. 2.

Fig. 6
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Comparison of the prediction from the numerical simulation with experimental data taken in

shadow zone. Experimental data is the same as in Fig. 5.
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